WORKSHEET 9

Date: 11/03/2021
Name:

Division Algorithm and Primes

THEOREM 1 (The Division Algorithm). For positive integers a and b, there exist unique integers q and r such that

$$
b=a q+r \quad 0 \leq r<a
$$

PROPOSITION 2. If $a, b \in \mathbb{Z}$ and $d=h c f(a, b)$, then there are integers s and t such that

$$
d=s a+t b .
$$

PROPOSITION 3. Let a and b be positive integers. If $b=a q+r$ for some integers q and r, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a)$.

What is the Euclidean algorithm and Division algorithm? This is best explained by an example. Compute

Example 4. $h c f(2880,504)$

THEOREM 5. Let a and b be integers, not both zero. Then a and b are relatively prime if and only if there exist integers x and y such that $1=a x+b y$.

THEOREM 6 (Euclid's Lemma). If $a \mid b c$, with $(a, b)=1$, then $a \mid c$.

Problems

1. Show for any integer $k,(9 k+4,2 k+1)=1$
2. If $(a, b)=1$, then $\left(a, b^{n}\right)=1$ for all positive integers.
3. If n is composite then n has a prime factor p such that $p \leq \sqrt{n}$
4. Suppose $a, b \in \mathbb{Z}, h c f(a, b)=d$. Prove $h c f\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
